MODELING THE EFFECT OF NEUROTRANSMITTER: EFFECT OF DOPAMINE ON MEDIUM SPINY NEURON

Rahmi Elibol
Advisor: Assoc.Prof.Dr. Neslihan Serap Şengör

İstanbul Technical University

5 June 2013
Striatum and Basal Ganglia Circuits

Basal Ganglia (BG) circuit

1 Squire, L et al., Fundamental Neuroscience, Elsevier, 2008
Parkinson (PD), Deep Brain Stimulation (DBS)

2

2 J. Eric Ahlskog, The Parkinson’s Disease Treatment Book, Oxford University Press, 2005
Neuron Models

Hodgkin-Huxley equation

\[C_m \dot{v_m} = I - I_K - I_{Na} - I_L \]
\[\dot{n} = \alpha_n(v_m)(1 - n) - (\beta_n(v_m)n) \]
\[\dot{m} = \alpha_m(v_m)(1 - m) - (\beta_m(v_m)m) \]
\[\dot{h} = \alpha_h(v_m)(1 - h) - (\beta_h(v_m)h) \]

Current Equations

\[I_K = g_K n^4(v_m - E_K) \]
\[I_{Na} = g_{Na} m^3 h(v_m - E_{Na}) \]
\[I_L = g_L(v_m - E_L) \]

3E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Neuron Behaviours

4 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Neuron Behaviours

4 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Neuron Behaviours

E.M. Izhikevich, Which model to use for Cortical spiking neurons?, IEEE, 2004
Ion currents that can be added to the HH model:

Na Currents:
Noninactivating Na current:

\[I_{Nap} = g_{Nap} \cdot m \cdot (v_m - E_{Na}) \]
Ion currents that can be added to the HH model:

Na Currents:

Noninactivating Na current:

\[I_{Nap} = g_{Nap} \cdot m(v_m - E_{Na}) \]
Ion currents that can be added to the HH model:
Ca Currents:
T type Ca current

\[I_{T_{Ca}} = g_{T_{Ca}} s_{\infty}(v_m)(v_m - E_{Ca}) \]
Ion currents that can be added to the HH model:

Ca Currents:

T type Ca current

\[I_{T_{Ca}} = g_{T_{Ca}} s_{\infty}(v_m)(v_m - E_{Ca}) \]
Ion currents that can be added to the HH model:
Ca Currents:
L type Ca current .

\[
I_{Ca} = \frac{g_{Ca} \cdot m_{Ca}^2 \cdot v_m \cdot \frac{z^2 \cdot F^2}{R \cdot T} \cdot ([Ca^{2+}]_e \cdot e^{-v_m \cdot \frac{z \cdot F}{R \cdot T}} - [Ca^{2+}]_i)}{1 - e^{-v_m \frac{z \cdot F}{R \cdot T}}}
\]
Ion currents that can be added to the HH model:

Ca Currents:
L type Ca current.

\[
I_{LCa} = \frac{g_{LCa} \cdot m_{LCa}^2 \cdot v_m \cdot z^2 \cdot F^2}{R \cdot T} \cdot \left([Ca^{2+}]_e \cdot e^{-v_m \cdot \frac{z\cdot F}{R \cdot T}} - [Ca^{2+}]_i \right) \frac{1 - e^{-v_m \cdot \frac{z\cdot F}{R \cdot T}}}{1 - e^{-v_m \cdot \frac{z\cdot F}{R \cdot T}}}
\]

Rahmi Elibol, Advisor: Assoc.Prof.Dr. Neslihan Serap Şengör:
İstanbul Technical University
MODELING THE EFFECT OF NEUROTRANSMITTER: EFFECT OF DOPAMINE ON MEDIUM SPINY NEURON
Ion currents that can be added to the HH model:
K Currents:
Fast Slow Inactive K current

\[I_{Kv1} = g_{Kv1} \cdot n^2 \cdot h \cdot (v_m - E_K) \]
Ion currents that can be added to the HH model:

K Currents:

Fast Slow Inactive K current

\[I_{Kv1} = g_{Kv1} \cdot n^2 \cdot h \cdot (v_m - E_K) \]
Ion currents that can be added to the HH model:
K Currents:
After Hyperpolarization Current:

\[I_{AHP} = g_{AHP}(v_m - E_K) \cdot \frac{[Ca^{2+}]_i}{[Ca^{2+}]_i + k_I} \]
Ion currents that can be added to the HH model:
K Currents:
After Hyperpolarization Current.

\[I_{AHP} = g_{AHP} (v_m - E_K) \cdot \frac{[Ca^{2+}]_i}{[Ca^{2+}]_i + k_l} \]
Medium Spiny Neuron (MSN) Model

\[C_m \dot{v}_m = I - I_K - I_{Na} - I_L - I_{L_{Ca}} - I_{Kv1} - I_{T_{Ca}} - I_{AHP} \]
Medium Spiny Neuron (MSN) Model

\[C_m \dot{v}_m = I - I_K - I_{Na} - I_L - I_{L_{Ca}} - I_{Kv1} - I_{T_{Ca}} - I_{AHP} \]
Medium Spiny Neuron (MSN) Model

\[C_m \frac{\partial v_m}{\partial t} = I - I_K - I_{Na} - I_L - I_{L_{Ca}} - I_{Kv1} - I_{T_{Ca}} - I_{AHP} \]
Medium Spiny Neuron (MSN) Model

\[C_m \dot{v}_m = I - I_K - I_{Na} - I_L - I_{L_{Ca}} - I_{Kv1} - I_{T_{Ca}} - I_{AHP} \]

\[I_{Kv1} = g_{Kv1} \cdot n^2 \cdot h \cdot (v_m - E_K) \]

\[I_{L_{Ca}} = \frac{g_{L_{Ca}} \cdot m_{L_{Ca}}^2 \cdot v_m \cdot \frac{z^2 \cdot F^2}{R \cdot T} \cdot ([Ca^{2+}]_e \cdot e^{-v_m \cdot \frac{z \cdot F}{R \cdot T}} - [Ca^{2+}]_i)}{1 - e^{-v_m \cdot \frac{z \cdot F}{R \cdot T}}} \]

\[I_{T_{Ca}} = g_{T_{Ca}} \cdot s_{\infty} (v_m) \cdot (v_m - E_{Ca}) \]

\[I_{AHP} = g_{AHP} \cdot (v_m - E_K) \cdot \frac{[Ca^{2+}]_i}{[Ca^{2+}]_i + k_l} \]

\[m_{L_{Ca}} = \left(m_{L_{Ca}}(V) - m_{L_{Ca}} \right) / \tau_{L_{Ca}}(V) \]

\[[Ca^{2+}]_i = \epsilon \cdot (\sum I_{Ca} - k_{Ca} \cdot [Ca^{2+}]_i) \]
Medium Spiny Neuron (MSN) Model
Dopamine effect

Neurotransmitter

http://www.fmhs.uaeu.ac.ae/wlammersteach/Introduction to PathoPhysiology/Lect3/Chemical_Synaps.html

\[5\text{http://www.fmhs.uaeu.ac.ae/wlammersteach/Introduction to PathoPhysiology/Lect3/Chemical_Synaps.html}\]
Dopamine effect

Houk et al. (2002):

\[-C_m \frac{dv_m}{dt} = \gamma(I_{IRK} + I_{L_{Ca}}) + I_{ORK} + I_I + I_s\]

I_{IRK}: Inward rectifying Potassium current
I_{ORK}: Outward rectifying Potassium current

Guthrie et al (2009):

\[-C_m \frac{dv_m}{dt} = D_{Tonic}(I_{Kir} + I_{L_{Ca}}) + I_{Ksi} + I_{Krp} + I_L + I_s\]

I_{Kir}: inwardly rectifying Potassium current
I_{Ksi}: slowly inactivating A-type Potassium current
I_{Krp}: non-inactivating Potassium current

γ and D_{Tonic} parameters changes dynamic behaviour.
Bifurcations

6 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Bifurcations

6 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Bifurcations

6 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
MODELING THE EFFECT OF NEUROTRANSMITTER: EFFECT OF DOPAMINE ON MEDIUM SPINY NEURON

6 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Bifurcations

Bifurcations

6 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Bifurcations

6 E.M.Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Bifurcations

6 E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT, 2007
Modeling Dopamine Effect

The first model $C_m \frac{dv_m}{dt} = I - I_K - I_{Na} - I_L - Dop \cdot (I_{L_{Ca}} + I_{Kv1}) - I_{T_{Ca}} - I_{AHP}$
Modeling Dopamine Effect

The first model \(C_m \dot{v}_m = I - I_K - I_{Na} - I_L - Dop \cdot (I_{L_{Ca}} + I_{Kv1}) - I_{T_{Ca}} - I_{AHP} \)
Modeling Dopamine Effect

The second model:

\[C_m \dot{v}_m = I - I_K - I_{Na} - I_L - I_{LCa} - I_{Kv1} - I_{Ca} - I_{AHP} \]
Modeling Dopamine Effect

The second model;

\[C_m \frac{\dot{v}_m}{I} = I - I_K - I_{Na} - I_L - I_{La} - I_{KV1} - I_{Ca} - I_{AHP} \]

Currents;

\[I_{Na} = (g_{Na} + g_{DNa})m^3h(v_m - E_{Na}) \]

\[I_{KV1} = (g_K + g_{DK})n^2h(v_m - E_K) \]

\[I_{La} = (g_{La} + g_{DLa})m^{2}_La \frac{\nu_m z^2 F^2}{RT} \frac{[Ca^{2+}]_e e^{-\nu_m z F RT}}{1 - e^{-\nu_m z F RT}} \]
Results

Bifurcation diagrams of model with parameter g_{DNa}.

![Bifurcation Diagram](image_url)
Results

Bifurcation diagrams of model with parameter $g_{D_{Na}}$.
Results

Bifurcation diagrams of model with parameter $g_{D_{Na}}$.
Results

Bifurcation diagrams of model with parameter $g_{D_{Na}}$.

![Bifurcation Diagrams](image1)

![Bifurcation Diagrams](image2)

![Bifurcation Diagrams](image3)
Results

Bifurcation diagrams of model with parameter g_{D_K}.
Results

Bifurcation diagrams of model with parameter g_{D_K}.
Results

Bifurcation diagrams of model with parameter g_{D_K} iletkenliğine göre dallanma diyagramı.
Results

Bifurcation diagrams of model with parameter $g_{D_{Na}}$.

Bifurcation diagrams of model with parameter $g_{D_{K}}$.
Results

Bifurcation diagrams of model with parameter $g_{D_{L_{Ca}}}$.
Results

Bifurcation diagrams of model with parameter $g_{D,LCa}$.
Results

Bifurcation diagrams of model with parameter $g_{D_{LCa}}$.
Results

Bifurcation diagrams of model with parameter g_{DNa}.

Bifurcation diagrams of model with parameter g_{DK}.

Bifurcation diagrams of model with parameter g_{DLCa}.
Results

investigate HH model and Ion currents that can be added to the HH model.
Results

investigate HH model and Ion currents that can be added to the HH model.

obtain meaningful of MSN model.
investigate HH model and Ion currents that can be added to the HH model.

obtain meaningful of MSN model.

modeling DA effect two different approaches.
Results

investigate HH model and Ion currents that can be added to the HH model.

obtain meaningful of MSN model.

modeling DA effect two different approaches.

modeling DA effect, using dynamical systems and bifucation analysis tools.
References

Urlt, www.frhs.uu.se/slam/mstseach/index.html, alindgh

Harlow, J.M., 1848. Passage of an iron rod through the head, Boston medical and surgical journal. 38(29), 389–393.

Harlow, J.M., 1868. Recovery from the passage of an iron bar through the head, Publications of the Massachusetts Medical Society, 2, 327–347.

Thank you for your attention.